Strong consistency in nonlinear stochastic regression models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong consistency of least-squares estimates in regression models.

A general theorem on the limiting behavior of certain weighted sums of i.i.d. random variables is obtained. This theorem is then applied to prove the strong consistency of least-squares estimates in linear and nonlinear regression models with i.i.d. errors under minimal assumptions on the design and weak moment conditions on the errors.

متن کامل

Kernel Quantile Regression for Nonlinear Stochastic Models

We consider kernel quantile estimates for drift and scale functions in nonlinear stochastic regression models. Under a general dependence setting, we establish asymptotic point-wise and uniform Bahadur representations for the kernel quantile estimates. Based on those asymptotic representations, central limit theorems are obtained. Applications to nonlinear autoregressive models and linear proce...

متن کامل

Strong Consistency of Kernel Regression Estimate

In this paper, regression function estimation from independent and identically distributed data is considered. We establish strong pointwise consistency of the famous Nadaraya-Watson estimator under weaker conditions which permit to apply kernels with unbounded support and even not integrable ones and provide a general approach for constructing strongly consistent kernel estimates of regression...

متن کامل

Predictions in Nonlinear Regression Models

Different predictors and their approximators in nonlinear prediction regression models are studied. The minimal value of the mean squared error (MSE) is derived. Some approximate formulae for the MSE of ordinary and weighted least squares predictors are given.

متن کامل

Predictions in Nonlinear Regression Models

Diierent predictors and their approximators in nonlinear prediction regression models are studied. The minimal value of the mean squared error (MSE) is derived. Some approximate formulae for the MSE of ordinary and weighted least squares predictors are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2000

ISSN: 0090-5364

DOI: 10.1214/aos/1015952002